Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Virulence ; 14(1): 2190650, 2023 12.
Article in English | MEDLINE | ID: covidwho-2281159

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic has a detrimental impact on public health. COVID-19 usually manifests as pneumonia, which can progress into acute respiratory distress syndrome (ARDS) related to uncontrolled TH17 immune reaction. Currently, there is no effective therapeutic agent to manage COVID-19 with complications. The currently available anti-viral drug remdesivir has an effectiveness of 30% in SARS-CoV-2-induced severe complications. Thus, there is a need to identify effective agents to treat COVID-19 and the associated acute lung injury and other complications. The host immunological pathway against this virus typically involves the THαß immune response. THαß immunity is triggered by type 1 interferon and interleukin-27 (IL-27), and the main effector cells of the THαß immune response are IL10-CD4 T cells, CD8 T cells, NK cells, and IgG1-producing B cells. In particular, IL-10 exerts a potent immunomodulatory or anti-inflammatory effect and is an anti-fibrotic agent for pulmonary fibrosis. Concurrently, IL-10 can ameliorate acute lung injury or ARDS, especially those caused by viruses. Owing to its anti-viral activity and anti-pro-inflammatory effects, in this review, IL-10 is suggested as a possible treatment agent for COVID-19.


Subject(s)
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Interleukin-10 , Respiratory Distress Syndrome/drug therapy , Acute Lung Injury/drug therapy
2.
Int J Mol Sci ; 23(18)2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2269008

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of millions of people around the world. Severe vitamin D deficiency can increase the risk of death in people with COVID-19. There is growing evidence that acute kidney injury (AKI) is common in COVID-19 patients and is associated with poorer clinical outcomes. The kidney effects of SARS-CoV-2 are directly mediated by angiotensin 2-converting enzyme (ACE2) receptors. AKI is also caused by indirect causes such as the hypercoagulable state and microvascular thrombosis. The increased release of soluble urokinase-type plasminogen activator receptor (suPAR) from immature myeloid cells reduces plasminogen activation by the competitive inhibition of urokinase-type plasminogen activator, which results in low plasmin levels and a fibrinolytic state in COVID-19. Frequent hypercoagulability in critically ill patients with COVID-19 may exacerbate the severity of thrombosis. Versican expression in proximal tubular cells leads to the proliferation of interstitial fibroblasts through the C3a and suPAR pathways. Vitamin D attenuates the local expression of podocyte uPAR and decreases elevated circulating suPAR levels caused by systemic inflammation. This decrease preserves the function and structure of the glomerular barrier, thereby maintaining renal function. The attenuated hyperinflammatory state reduces complement activation, resulting in lower serum C3a levels. Vitamin D can also protect against COVID-19 by modulating innate and adaptive immunity, increasing ACE2 expression, and inhibiting the renin-angiotensin-aldosterone system. We hypothesized that by reducing suPAR levels, appropriate vitamin D supplementation could prevent the progression and reduce the severity of AKI in COVID-19 patients, although the data available require further elucidation.


Subject(s)
Acute Kidney Injury , COVID-19 Drug Treatment , COVID-19 , Thrombosis , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Angiotensin-Converting Enzyme 2 , Angiotensins , COVID-19/complications , Fibrinolysin , Humans , Plasminogen , Receptors, Urokinase Plasminogen Activator , SARS-CoV-2 , Thrombosis/complications , Urokinase-Type Plasminogen Activator , Versicans , Vitamin D , Vitamins
3.
Immunol Lett ; 254: 30-38, 2023 02.
Article in English | MEDLINE | ID: covidwho-2179680

ABSTRACT

BACKGROUND: Immunothrombosis, a process of inflammation and coagulation, is involved in sepsis-induced acute respiratory distress syndrome formation (ARDS). However, the clinical correlation between immunothrombosis biomarkers (including tissue factor [TF] and von Willebrand factor [vWF]) and coronavirus disease 2019 (COVID-19)-related ARDS is unknown. This study investigated ARDS development following moderate-to-critical COVID-19 and examined immunothrombosis biomarkers as ARDS predictors. METHODS: This retrospective cohort study included patients with moderate-to-critical COVID-19 (n = 165) admitted to a northern teaching hospital during the 2021 pandemic in Taiwan, who had no COVID-19 vaccinations. Immunothrombosis biomarkers were compared between COVID-19 patients with and without ARDS (no-ARDS) and a control group consisting of 100 healthy individuals. RESULTS: The study included 58 ARDS and 107 no-ARDS patients. In multivariable analysis, TF (aOR=1.031, 95% CI: 1.009-1.053, p = 0.006); and vWF (aOR=1.053, 95% CI: 1.002-1.105, p = 0.041) were significantly associated with ARDS episodes, after adjusting for other confounding factors. vWF and TF predicted ARDS with the area under the curve of 0.870 (95% CI: 0.796-0.945). Further mechanical ventilation analysis found TF to be correlated significantly with pCO2 and ventilatory ratio. CONCLUSIONS: TF and vWF levels potentially predicted ARDS development within 7 days of admission for COVID-19 after adjusting for traditional risk factors. TF correlated with ventilation impairment in COVID-19 ARDS but further prospective studies are needed.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Retrospective Studies , von Willebrand Factor/analysis , Thromboinflammation , COVID-19/complications , Biomarkers
4.
Viruses ; 15(1)2023 Jan 04.
Article in English | MEDLINE | ID: covidwho-2166968

ABSTRACT

Aging processes, including immunosenescence, inflammation, inflammasome formation, genomic instability, telomeric attrition, and altered autophagy, are involved in viral infections and they may contribute to increased pathophysiological responses to the SARS-CoV-2 infection in the elderly; this poses additional risks of accelerated aging, which could be found even after recovery. Aging is associated with oxidative damage. Moreover, SARS-CoV-2 infections may increase the production of reactive oxygen species and such infections will disturb the Ca++ balance via an endoplasmic reticulum (ER) stress-mediated unfolded protein response. Although vaccine development and anti-inflammation therapy lower the severity of COVID-19, the prevalence and mortality rates are still alarming in some countries worldwide. In this review, we describe the involvement of viral proteins in activating ER stress transducers and their downstream signals and in inducing inflammation and inflammasome formation. Furthermore, we propose the potential of melatonin as an ER stress modulator, owing to its antioxidant, anti-inflammatory, and immunoregulatory effects in viral infections. Considering its strong safety profile, we suggest that additive melatonin supplementation in the elderly could be beneficial in treating COVID-19.


Subject(s)
COVID-19 , Melatonin , Humans , Aged , Melatonin/therapeutic use , Melatonin/pharmacology , Inflammasomes , SARS-CoV-2/metabolism , Endoplasmic Reticulum Stress
5.
Int J Med Sci ; 19(8): 1340-1356, 2022.
Article in English | MEDLINE | ID: covidwho-1969726

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause immunosuppression and cytokine storm, leading to lung damage and death. The clinical efficacy of anti-SARS-CoV-2 drugs in preventing viral entry into host cells and suppressing viral replication remains inadequate. MicroRNAs (miRNAs) are crucial to the immune response to and pathogenesis of coronaviruses, such as SARS-CoV-2. However, the specific roles of miRNAs in the life cycle of SARS-CoV-2 remain unclear. miRNAs can participate in SARS-CoV-2 infection and pathogenesis through at least four possible mechanisms: 1. host cell miRNA expression interfering with SARS-CoV-2 cell entry, 2. SARS-CoV-2-derived RNA transcripts acting as competitive endogenous RNAs (ceRNAs) that may attenuate host cell miRNA expression, 3. host cell miRNA expression modulating SARS-CoV-2 replication, and 4. SARS-CoV-2-encoded miRNAs silencing the expression of host protein-coding genes. SARS-CoV-2-related miRNAs may be used as diagnostic or prognostic biomarkers for predicting outcomes among patients with SARS-CoV-2 infection. Furthermore, accumulating evidence suggests that dietary polyphenolic compounds may protect against SARS-CoV-2 infection by modulating host cell miRNA expression. These findings have major implications for the future diagnosis and treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , MicroRNAs , COVID-19/genetics , Dietary Supplements , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , SARS-CoV-2 , Virus Replication/genetics
6.
Antioxidants (Basel) ; 10(9)2021 Sep 09.
Article in English | MEDLINE | ID: covidwho-1408380

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic continues to burden healthcare systems worldwide. COVID-19 symptoms are highly heterogeneous, and the patient may be asymptomatic or may present with mild to severe or fatal symptoms. Factors, such as age, sex, and comorbidities, are key determinants of illness severity and progression. Aging is accompanied by multiple deficiencies in interferon production by dendritic cells or macrophages in response to viral infections, resulting in dysregulation of inflammatory immune responses and excess oxidative stress. Age-related dysregulation of immune function may cause a more obvious pathophysiological response to SARS-CoV-2 infection in elderly patients and may accelerate the risk of biological aging, even after recovery. For more favorable treatment outcomes, inhibiting viral replication and dampening inflammatory and oxidative responses before induction of an overt cytokine storm is crucial. Resveratrol is a potent antioxidant with antiviral activity. Herein, we describe the reasons for impaired interferon production, owing to aging, and the impact of aging on innate and adaptive immune responses to infection, which leads to inflammation distress and immunosuppression, thereby causing fulminant disease. Additionally, the molecular mechanism by which resveratrol could reverse a state of excessive basal inflammatory and oxidative stress and low antiviral immunity is discussed.

7.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1367848

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 is a new, highly pathogenic virus that has recently elicited a global pandemic called the 2019 coronavirus disease (COVID-19). COVID-19 is characterized by significant immune dysfunction, which is caused by strong but unregulated innate immunity with depressed adaptive immunity. Reduced and delayed responses to interferons (IFN-I/IFN-III) can increase the synthesis of proinflammatory cytokines and extensive immune cell infiltration into the airways, leading to pulmonary disease. The development of effective treatments for severe COVID-19 patients relies on our knowledge of the pathophysiological components of this imbalanced innate immune response. Strategies to address innate response factors will be essential. Significant efforts are currently underway to develop vaccines against SARS-CoV-2. COVID-19 vaccines, such as inactivated DNA, mRNA, and protein subunit vaccines, have already been applied in clinical use. Various vaccines display different levels of effectiveness, and it is important to continue to optimize and update their composition in order to increase their effectiveness. However, due to the continuous emergence of variant viruses, improving the immunity of the general public may also increase the effectiveness of the vaccines. Many observational studies have demonstrated that serum levels of vitamin D are inversely correlated with the incidence or severity of COVID-19. Extensive evidence has shown that vitamin D supplementation could be vital in mitigating the progression of COVID-19 to reduce its severity. Vitamin D defends against SARS-CoV-2 through a complex mechanism through interactions between the modulation of innate and adaptive immune reactions, ACE2 expression, and inhibition of the renin-angiotensin system (RAS). However, it remains unclear whether Vit-D also plays an important role in the effectiveness of different COVID-19 vaccines. Based on analysis of the molecular mechanism involved, we speculated that vit-D, via various immune signaling pathways, plays a complementary role in the development of vaccine efficacy.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Vitamin D/administration & dosage , Vitamin D/blood , Animals , COVID-19/blood , COVID-19/immunology , COVID-19 Vaccines/immunology , Clinical Trials as Topic , Humans , Immunogenicity, Vaccine , Pandemics/prevention & control , Randomized Controlled Trials as Topic , SARS-CoV-2/isolation & purification , Vitamin D/immunology
SELECTION OF CITATIONS
SEARCH DETAIL